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Abstract

Due to the non-uniform distribution and fractural structure of the beads inside a porous medium, the porosity
distributed in the porous medium is random for most realistic situations. Therefore, the effects of the porosity distributed
casually inside a porous block mounted on a heated region with a laminar slot impinging jet on flow and thermal fields
are investigated numerically. A numerical method of SIMPLEC is adopted to solve governing equations, as for the
energy equation, a one-equation thermal model with Van Driest’s wall function is adopted. All the non-Darcian effects
including the solid boundary and inertial effects are considered and three different porosity models of constant, variable
and random are examined. The results indicate that the relationship between the local Nusselt number Nu, and the near
wall local porosity ¢, is a negative correlation. Consequently, in order to enhance the thermal performance of the porous
medium, the porosity near the solid plate should be smaller to make the conductive heat transfer to be dominant. ©
1998 Elsevier Science Ltd. All rights reserved.

Nomenclature ks stagnant conductivity [W m~' °C ']
b width of the slot jet [m] k. effective thermal conductivity of the porous block
B, coefficient of stagnant conductivity [Wm'°C]

C; specific heat of fluid [kJ kg=' °C "]

d, mean bead diameter [m]

Da Darcy number (= K/b?)

Dy empirical constant in thermal dispersion con-
ductivity

F inertial factor

h, local heat transfer coefficient [W m~2 °C ']

H; dimensional distance from the jet inlet to the top
surface of the block [m]

H, dimensional height of the block [m]

H. dimensional distance from the jet inlet to the solid
wall [m]

HJ dimensionless distance from the jet inlet to the top
surface of the block (= H,/b)

HP dimensionless height of the block (= H,/b)

HZ dimensionless distance from the jet inlet to the solid
wall (= H./b)
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k; thermal conductivity of the fluid [W m~' °C~']

k, thermal conductivity of solid phase in porous block
[Wm~'°C~]

k. thermal dispersion conductivity [W m~' °C ']

K permeability [m?]

[ Van Driest’s wall function

L, dimensional length of the block [m]

LP dimensionless length of the block (=L,/b)

m dimensionless flow rate of fluid

N(a,b*) normal distribution with mean « and standard
deviation b

Nu, local Nusselt number along the heated wall of the
block (=h.b/ky)

Nu mean Nusselt number

p dimensional pressure [N m~?]

P dimensionless pressure (=p/pvi)

Pr;  Prandtl number of fluid (= p;Cpv/ky)

Pr, Prandtl number of porous medium (= p;Cyvy/k,)

r, r, coefficient in equation (2)

Re Reynolds number (=uvyb/vy) -
Re, bead diameter based Reynolds number (= |u,|d,/v¢)
T temperature [°C]
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u dimensional velocity in the x direction [m s™']

U dimensionless velocity in the X direction (=u/v,)

v dimensional velocity in the y direction [m s™!]

ve jet inlet velocity [m s~ ']

V' dimensional velocity in the Y direction (=v/v,)

x, y dimensionless Cartesian coordinates [m]

X, Y dimensionless Cartesian coordinates (=x/b,

=y/b).

Greek symbols

o thermal diffusivity [m* s™']

As shortest distance from the calculated point to the
boundaries of the porous block
& porosity
£ mean porosity
g, effective porosity
&, near wall local porosity at ¥ = 0.0015

0 dimensionless temperature (= (T— To)/(Tw—T},))
A ratio of thermal conductivity of solid phase to fluid
phase in porous block

viscosity [kg m~'s™']
kinematic viscosity [m* s~ ']

random variable

fluid density [kg m ™7

standard deviation of porosity

computational variable

dimensionless stream function

empirical constant in Van Driest’s wall function.

SRS =S IS AN~

Superscripts
n the nth iteration index
— mean value.

Subscripts

c.v. control volume

e effective value

f external flow field

i index

in flowing into porous block
out leaving from porous block
p porous medium

s solid block

w solid wall

x along the X direction

0 inlet condition.

Other
|| magnitude of velocity vector.

1. Introduction

It is a well-known method that a metal porous block
is adopted to disturb fluid flow and enlarge heat transfer
surface which enhances heat transfer rate. The issue is
studied widely and deeply in the last decade.

Doubtless, porosity is a remarkable factor during ana-
lyzing the fluid flow and heat transfer of porous medium.
For facilitating analyses, in the beginning the porosity
was usually assumed as a constant, which is conveniently
called a constant porosity model in this study. However,
Roblee et al. [1] and Benenati and Brosilow [2] based on
their experimental results observed that porosity varied
significantly in the near-wall region. Schwartz and co-
workers [3, 4] conducted experimental studies and mea-
sured the maximum velocity in the near wall region which
is normally called the channelling effect. These phenom-
ena directly validated that the porosity which was
regarded as a variable was more realistic. Furthermore,
Cheng et al. [5] pointed out that in much of the literature
the porosity was simulated as a damped oscillatory func-
tion of the distance from the wall and the damped oscil-
latory phenomenon was insignificant as the distance was
larger than five-bead diameters for packed beds. There-
fore, in concerning both of the practical use and con-
venient theoretic model, the variation of the porosity is
assumed as an exponential function of the distance from
the solid wall and is called a variable porosity model for
comparing with the constant porosity model. Based upon
the above experience, two different models have been
adopted to derive the individual equations of fluid flow
and heat transfer for the porous medium.

For the constant porosity model, Vafai and Tien [6]
according to the concept of local volume averaging analy-
sis derived the governing equations of fluid flow and
heat transfer for the porous medium. As for the variable
porosity model, Hsu and Cheng [7] utilized the volume
averaging technology to derive the governing equations
of the fluid flow and heat transfer for the porous medium.
Both the above two different types of the governing equa-
tions were widely employed to study the effect of the
inertia term, solid boundary and variable porosity on the
fluid flow and heat transfer of the porous medium in both
forced and natural convections, such as Vafai and co-
workers [8, 9], Kaviany [10], Cheng and Zhu [11], Hadim
[12], Hunt and Tien [13] and Fu and co-workers [14-16],
etc.

However, Georgiadis and co-workers [17-19] studied
the unidirectional transport phenomena of flow and heat
transfer in the random porous medium with stochastic
models and obtained the results that for the same pressure
gradient along the channel the mean flow rate U(g) based
on random porosity was larger than U(€) based on mean
porosity as the Forchheimer model of flow was held.
Saito et al. [20] studied the effects of the porosity and
void distributions on the permeability by using Direct
Simulation Monte Carlo method and found that the per-
meability depended not only on the porosity but also on
the void distribution strongly. These facts indicated that
except for special screen process the sizes of the beads are
extremely difficult to be uniform. Besides, the geometry
of the broad definition of beads is not always spherical
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and sometimes is fragmental. Therefore, the charac-
teristics of the porosity distribution being disordered and
random which results from the non-uniform size and
fractural structure of the beads should be considered for
a more realistic model of the porous medium. This model
is abbreviated to the random porosity model. Although
the effect of the random porosity distribution on the flow
field had been discussed in the past, however, most of
them were only concentrated on simple phenomena. As
the knowledge of the authors, the results and discussion
of the heat transfer and fluid flow mechanisms of the
porous medium with the random porosity model were
seldom presented in detail.

Consequently, the aim of this study is to investigate
effects of a random porosity model on heat transfer per-
formance of a porous block under an impinging jet
numerically. The distribution of the porosity follows the
normal (Gaussian) distribution rule and is generated by
Kinderman—Ramage procedure [21]. The diameters of
101 beads of a porous block are measured to obtain a
reasonable mean porosity and standard deviation of the
porosity. The constant and variable porosity models are
also considered. A numerical method of SIMPLEC [22]
is adopted to solve the governing equations, as for the
energy equation, a one-equation thermal model with Van
Driest’s wall function is adopted. All the non-Darcian
effects including the solid boundary effects and inertial
effects are considered. Other important parameters such
as Reynolds number, geometry size ratios of the porous
block and Prandtl number, etc., are selected based on the
author’s previous studies [14—16]. The results indicate
that the relationship between the local Nusselt number
Nu, and the near wall local porosity ¢, is a negative
correlation. Consequently, in order to enhance effectively
the thermal performance of the porous medium, the
porosity near the solid plate should be smaller to make
the conductive heat transfer dominant.

2. Physical model

The physical model is shown symmetrically in Fig. 1.
There is a two-dimensional laminar slot jet impinging on
a partially heated plate. The width of the jet inlet is b.
The uniform inlet velocity and temperature of the jet are
vy and T, respectively. A portion of the impingement
plate is heated and the other region is insulated. The
length of the heated region is L,, and the temperature of
the heated region is T,, which is higher than 7}. A porous
block of which the porosity distribution is corresponding
to the random porosity model is mounted on the heated
region. Based on the results of Fu and Huang [15, 16],
the height H, and the length L, of the block are chosen
to 0.5b and 2b, respectively. The distances from the jet
inlet to the top surface of the block and the impingement
plate are H; (=3.5b) and H. (=4.0b), respectively. The

F

insulated

porous

block
1L - *
jet, inlet / I Hj H
N/
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Tw insulated
~—— Lp/

Fig. 1. Physical model.
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whole computation domain is large enough for fully
developed distributions of the velocity and temperature
to be formed. Under this configuration, the flow field can
be decomposed into two conjugate regions: one stands
for the internal flow field where it is bounded by the
porous block, and the other is called the external flow
field which excludes the porous media.

In order to facilitate the problems, the following
assumptions are made

(1) The porous block is made of copper beads which
have different sizes of diameters. The beads do not
chemically react with the fluids.

(2) The flow field is steady state, two-dimensional, single
phase, laminar and incompressible. The symmetrical
assumption shown in Fig. 1 exists in the random
porosity model.

(3) The fluid properties are constant and the effect of
gravity is neglected.

(4) The transverse thermal dispersion is modeled by Van
Driest’s wall function [23], hence, a one-equation
model of the energy equation is used for the porous
medium.

(5) The effective viscosity of the porous medium is equal
to the viscosity of the external fluid.

As mentioned above, the values of the porosity dis-
tributed in the porous medium are random. Then the
following process is used to obtain the data of the mean
porosity & and standard deviation ¢,. The diameters of
101 beads are ensampled and measured from decompo-
sition of a sintered brass porous block. The diameters are
classified and shown in Fig. 2. The mean diameter d, of
the beads is about 1.35 mm and its standard deviation is
0.16 mm which is about 12% of the mean diameter of
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Fig. 2. The size distribution of 101 beads in a porous block.

the beads. Shown in Fig. 2, the distribution of the bead
sizes is like a normal distribution. As a result, the space
occupied by the solid phase in the porous medium is
corresponding to the normal distribution. Then that the
residual space (void phase) in the porous medium also
follows the normal distribution rule can be drawn. Based
on the data of the density of the beads provided by the
bead maker, the maximum mean porosity of the porous
block is approximately estimated as 0.47. Therefore, in
this study, the mean porosity & is conveniently regarded
as 0.5 and the standard deviation ¢, is 0.05 which is 10%
of the mean porosity. The mean diameter d, is selected
as a characteristic bead diameter and equal to 1.25 mm
for easily presenting the results.

In order to compare the difference among the models
of constant porosity, variable porosity and random
porosity, three models of porosity distribution are taken
into consideration. They are
(1) constant porosity model: ¢ = & (1)
(2) variable porosity model: ¢ = g,[1 +r,e~"22%] 2)
where As is the shortest distance from the calculated point
to the boundary of the porous block, and r, and r, are
both empirical constants. The &, is an effective porosity.
The mean porosity & can be obtained from integrating

the local porosity ¢ in the full domain of the porous block
as follows

1 L/) Hﬂ As/d-
£= 1 A dy d; 3
: prHpL j all+r e 5] dy d 3
where the r, is obtained from Vafai [§] and the r, is
selected to make the local porosity in the near wall region
to be equal to one. As a result, for the cases of € = 0.5, the
&, 1y and r, are equal to 0.307, 2.256 and 2, respectively.

(3) Random porosity model: according to the results
of the measuring process, the porosity distribution of the
porous medium approximately follows the form of the

normal distribution with mean porosity & and standard
deviation g, shown in Fig. 2. For necessity of computing
process, the theoretic form of the porosity distribution of
the random porosity model is obtained from the fol-
lowing method. The Kinderman—Ramage procedure [21]
(Appendix) is used to generate a random variable ¢ of
the standard normal distribution, N(0, 1), first. And the
random variable ¢ is transformed to gain a general ran-
dom variable ¢ corresponding to a general normal dis-
tribution, N(&, ¢2), of which the mean & and standard
deviation o, are equal to designed constants, respectively.
Therefore, the distribution of the general random vari-
able ¢ is regarded as the porosity distribution of the
random porosity model in this study. Shown in Fig. 3,
the solid line is the distribution of the general random
variable ¢ of the normal distribution N(0.5,0.05%)
obtained from the Kinderman—Ramage procedure and
the dashed line is the result of the theoretical normal
distribution N(0.5,0.05%). The deviation between both
lines are small.

The permeability K, and inertia factor F are defined as

(8]

3367%
= 712 4)
150(1—¢)
1.75
J— )

J150¢"5

The effective thermal conductivity of a porous medium
k. is a combination of the stagnant conductivity k4 and
the thermal dispersion conductivity k, [23], which simu-
lates the transverse thermal dissipation. The relationship
between k., kq and k, is then

ke = kq+k, (6)

0.80

—— the results of K-R 1
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Fig. 3. The distributions of probability density of random vari-
able ¢ of normal distribution N(0.5,0.05%) generated by
computer.
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and ky is defined as
2A/1— B —1
K fimee 2 6x|: oA )ln<A>
k¢ A—B, (A—B,)> B,
B,+1 A(By—1)
2 7 A-B, )
where
k,
% (®)
1—g\lo?
By = 1.25 <TE> )
and k, is defined by Van Driest’s wall function as
ki
— = D1 PriRe,|u,|l (10)

ky
where Dy is an empirical constant, Re, is the bead diam-
eter based Reynolds number, defined as

_ |up|d7

» : (11)

Ve

Re

where / is the Van Driest’s wall function defined as
[=1—e 2% (12)
and o is an empirical constant.

Based on the above assumptions and with the following
characteristic scales of b, T,,—T,, pvi and v,, the gov-
erning equations, boundary conditions and geometry
dimensions are normalized as follows:

(1) Governing equations of the external flow field
continuity equation
oU; OV

4+ —=
oX  dY

0 (13)

X-momentum equation

oU; oU; oP, 1 (U, 0*U;

— — = - — 14
Ur0X+ toy 6X+Re e +6Y2 (14
Y-momentum equation

vy vy oP, 1 (*Vy &*V;

— V== — ==+ 1
Uf(?X+ toy (3Y+Re oX? +(7y2 (13
energy equation

00 00 1 00,  0%0
Ure 4+ Vigo = ! ). (16)

1.4 dY RePre\ox? oy?

(2) Governing equations of the internal flow field [7]
for the porous block situation

continuity equation

0Uy 3V, _
ox oYy

0 (17)

X-momentum equation

v (U, O (U 0P

Pox\ e Poy\e )  oX
+L 62Up+32Up 1 U FIU,| U
Re\gx?  ov2 ReDa’"" /Da8 P
Y-momentum equation

N AV AN
Pox\ e Poy\e )  0X
1 oV, oV, 1 FU,| y
Re\px? o172 ReDa’'® /Da8 P
energy equation

gy 0 0 120 0 (1 W,
PoX ' PoY 0X\RePr,0X) 0Y\RePr,dY)

(20)

(18)

(19)

(3) Boundary conditions
on surface AB (symmetrical line)
Vi
oxX D¢
av, 00
p /\f =0, a—; =0 21
on surface BC (heated region)
U,=0, V,=0, 0,=1 (22)
on surface CD (insulated region)
a0 _
oY
on surface ED (X — o0)

6Uf_ an_ (30f_
DA ) (24)

on surface EF (Y — o)
oU; avy a0;
Yy oY 7 Y
on surface FG (wall)
U=0, V;=0 %—0 (26)
f— Y f— Y aX -
on surface GA (jet inlet)
U =0, V;=-1, 6;=0. 27
There are some interfacial conditions at the interfaces
between the porous block and external flow field. These
are the matching conditions of the horizontal and vertical
velocities, normal and shear stresses, temperature, heat
flux and pressure. However, these conditions will make
the problem more complex. A simplified method
suggested to solve these interfacial problems was dis-
cussed in the study of Hadim [12]. The interfacial
conditions at the fluid/porous medium interface are

0

U, =0,

U=0, V;=0, 0 (23)

O’

0’

0 25)
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automatically satisfied [12] due to the Brinkman exten-
sion in the momentum equations for the porous medium.

3. Numerical method

The SIMPLEC algorithm [22] with TDMA solver [24]
is used to solve the governing equations (13)—(20) for the
flow and thermal fields. Equations (13)—(20) are first
discretized into algebraic equations by using the control
volume method [24] with a power-law scheme. The
underrelaxation factor is 0.2 for both the fields of velocity
and temperature. The conservation residues [22] of the
equations of the momentum, energy and continuity and
the relative errors of each variable are used to examine
the convergence criteria which are defined as follows:

(Z|Residue of @ equation|?,)'? < 104,
® = U, V,0,and mass flow rate  (28)
max | Q" — |
max |®" |

In order to reduce the computation time, a non-stag-
gered mesh is used. The finer meshes are placed in both
the interfacial region of the block and near the solid wall
region. The meshes are then expanded outwards from the
interfacial boundary and the solid wall with a scale ratio
of 1.05. Also on the basis of the suggestions of Patankar
[24], the harmonic mean formulation of thermophysical
properties is used to avoid the effects of abrupt change
of these properties across the interfacial region of the
block and the external flow field on the computation
accuracy.

The numerical method and accuracy are validated by
Fuetal. [15, 16]. The comparison of the results of Miyar-
zaki and Silberman [25], which were derived by an ana-
Iytical method for a case of a laminar slot jet impinging
on a smooth wall, and the results of this study (solid line)
are indicated in Fig. 4. The deviation between these two
results is small.

The parameters which include the Reynolds number
Re, block height HP, block length LP and mean porosity
g, adopted in this study are tabulated in Table 1. The
Darcy number Da listed in Table 1 is based on the mean
porosity &. Since the porosity ¢ is not a constant in both
the variable and random porosity models, hence the Da
in each control volume is also a variable during the com-
putation. For the Re =450 cases, the whole dimen-
sionless domain X'x Y is 15.0x12.0 and the fully
developed conditions at the outlet sections can be satis-
fied.

Table 2 shows the empirical constants used in the defi-
nitions of the porosity ¢ for the variable porosity model
and the Van Driest’s wall function / [equation (12)].
Where the D and o are provided by Cheng and Hsu
[23].

<1075, @=U,V,P,0. 29)

0.50 T T T v
Y
Authors' result
0.40 o, 00000 Miyazaki and
« Silberman [25]
>
5]
& 0.30 +
N
»
z
0.20 |
0.10 = Re=450, HZ=3.5 1
0.00 L 1 1
0.00 1.00

2.00 3.00 4.00 5.00
X
Fig. 4. The results of local Nusselt number distributions of jet

impinging normally on smooth wall, compared with Miyazaki
and Silberman [25].

Table 1
The main parameters

b(m) Re HP HJ LP t o, d(m) Da Pr

B

001 450 05 35 2 0.5 0.05 125E—-35.208E—5 0.7

Table 2
The empirical constants for & = 0.5 (¢, = 0.307)

T s D+ w

2.256 2 0.3 35

The results of grid tests are listed in Table 3, in order
to gain more accurate results of the random porosity
model, the 327 x 182 meshes are chosen in this study, and
there are 76 x 68 meshes inside the porous block.

Table 3
Grid tests of porous block for Re =450, HP = 0.5, LP = 2,
HJ=35g=05and Pr=0.7

Meshes of X Meshes of Y Nu, Iterations
327 182 10.708 21112
103 182 10.739 28 800

86 182 10.753 15982

62 182 10.840 17152

86 220 10.751 44090

86 94 10.871 3189
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4. Results and discussion

Without notice, Re = 450,& = 0.5, 0, = 0.05, Pr = 0.7,
HP = 0.5, LP = 2and HJ = 3.5 are fixed in the following
situations.

Theoretically, there are infinite patterns generated by
a random porosity model with a given mean porosity &
and standard deviation o,. It is difficult to solve all of the
patterns, therefore, only ten patterns with the same mean
porosity & (=0.5) are presented to investigate the effects
of the random porosity model on the flow and thermal
fields. The first three patterns (runs 1-3) have the same
random variable ¢ of the standard normal distribution
but three different standard deviation ¢, 0of 0.01, 0.05 and
0.1, respectively. The latter seven patterns (Runs 4-10)
have the same standard deviation o, (=0.05) with the
different random porosity patterns.

The global porosity distribution maps and the near
wall local porosity ¢, distributions along the X direction
at ¥ = 0.0015 where it is the central position of the first
control volume in Y direction during the computation,
of the variable porosity model and two selected cases
(Runs 2, 4) of the random porosity models are shown in
Figs 5(a)—(f). In the global porosity distribution map,
the total area is approximately divided into three main
different porosity regions with different colors where the
darker color represents the large porosity. For the vari-
able porosity model, each color region has the same
porosity interval of 0.22. However, for the random
porosity models, the central region of the porosity index
means the variation of the porosity to change from £—o,
to £+o0, In general, for the porous medium made of
monosized and nonconsolidated beads, the pack between
the solid beads and the solid wall is sparser than that
between the beads and beads in the core region. There-
fore, as shown in Figs 5(a) and (b) for the variable
porosity model, the near wall local porosity &, is almost
equal to unity, and the porosity in most regions varies
from 0.32 to 0.54. Oppositely, for the random porosity
model, as mentioned above the porosity distributions are
not in order, then the pack between the beads and the
solid wall is no longer sparer than that of the other
positions. Hence, for the random porosity models shown
in Figs 5(c)—(f), the variation of porosity in the most
region is from £—o, to £+0, and the variations of the
near wall local porosity ¢, are drastic and disorder.
Although the Runs 2 and 4 have the same mean porosity
and standard deviation, the two cases have the different
random variables, then the global porosity distributions
and near wall local porosity ¢, distributions are different.

Shown in Figs 6(a)—(f), there are streamlines for the
cases of the constant and variable porosity models and
four selected cases (Runs 1-4) of the random porosity
models, respectively. In order to illustrate the flow and
thermal fields more clearly, the phenomena near the
porous block are presented only. The dimensionless
stream function  is defined as:

global porosity distribution map near wall local porosity at

Y=0.0015
porosity distribution o
m
0.5, ap
075
> variable porosity !
o model
o la £=0.5 (£.=0.307) |
0 1.0 Y=0.0015 |

porosity index
L B

L76 0.98 o0 Tozs om0 o5 1oo
X
(a) (b)

1.00 ——

random porosity
o7 tmodel (RUNZ2)

|l
£=0.5 0,=0.05
Y=0.0015

)

1.00 ———

random  porosity |
075 model (RUN4)

0.25 ¢=0.5 0,=0.05
Y=0.0015

0.00 ]
0.00 025 050 075 1.00
X

(e) ®

Fig. 5. Global porosity distribution map and near wall local
porosity ¢, distribution at ¥ = 0.0015 along the X: (a) and (b)
variable porosity model, € = 0.5 (¢, = 0.307); (c) and (d) random
porosity model, Run 2 (¢ = 0.5, ¢, = 0.05); and (e) and (f)
random porosity model, Run 4 (¢ = 0.5, g, = 0.05).

W W
S oY X
The fluids are issued from the jet inlet and impinge on
the top surface of the porous block first. Due to the
existence of the flow resistance inside the porous block,
only a portion of the fluids can penetrate into the porous
block. A circulation region neighboring to the right side
of the block occurs. This flow pattern is disadvantageous
to the heat transfer performance of the heated region.
The flow pattern outside the porous block are similar for
the six different cases. However, that the streamline of
Y = 0.001 of the variable porous model is close to the
solid wall, which means that more fluids flow through
the near wall region.

Tty and 7, are the flow rates of the fluids pen-
etrating into and leaving from the porous block, respec-
tively, and indicated in Table 4. Where 7, is the flow rate
of the fluid issued from the jet inlet. The fluids penetrate
into and leave from the porous block through the top
and right side surfaces, respectively. The flow rate of the
variable porosity model penetrating into the porous

U and V= (30)
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Fig. 6. Streamlines of different porosity models: (a) constant, (b) variable, (c) random, Run 1 (¢, = 0.01), (d) random, Run 2 (¢, = 0.05),

(e) random, Run 3 (¢, = 0.1) and (f) random, Run 4 (5, = 0.05).

Table 4
Ratio of flow rate (71,) penetrating into the porous block to that
of jet inlet (rizy)

Ratio of flow rate

Top surface Right side surface

Porosity

model Ty in/Hly 11 ou/ 10 iy in/tily 1l ou/ T

Constant 0.0450 0 0 0.0450

Variable 0.0935 0 0 0.0935

Random Run 1 0.0448 0 0 0.0448
Run 2 0.0416 0 0 0.0416
Run 3 0.0338 0 0 0.0338
Run 4 0.0421 0 0 0.0421
Run 5 0.0417 0 0 0.0417
Run 6 0.0427 0 0 0.0427
Run 7 0.0434 0 0 0.0434
Run 8 0.0415 0 0 0.0415
Run 9 0.0423 0 0 0.0423
Run 10 0.0417 0 0 0.0417

block is almost two times of those of the other two
models. In addition, the flow rate of the constant porosity
model is larger than those of the random porosity models.
As for the flow rates of the first three cases of the random
porosity models (Runs 1, 2, and 3), the smaller the stan-
dard deviation o, the larger the flow rate becomes. The
reason may be suggested as that the more uniform
porosity distribution is, the more fluids penetrate through
the porous medium under & = 0.5 situation.

The local velocity U distribution in the near wall region
along the Y direction at four different X positions,
X =0.25,0.5,0.75 and 0.95 are illustrated in Figs 7(a)—
(d), respectively. Only the data of the Run 2 are selected
from the cases of all random porosity models and indi-
cated in the figures. Since the porosity varies casually, the
local velocity U of the random porosity model presents a
jagged profile and the channeling effect does not appear.
In general, the distribution of local U velocities of the
random porosity model are similar to that of the constant
porosity model, the reason is that most of the values
of the local porosity vary from §—2g, to £+ 20,, which
occupies almost 95% of the full porosity distribution.
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Fig. 7. The distributions of velocity U along the Y direction at

When the value of g, is small, the value of §— 20 is close
to that of £+ 20,

For the variable porosity model, the maximum value
of the local velocity U increases first as X increases and
decreases after X = 0,75. However, a different trend
exists for the constant and random porosity models, the
maximum (or bulk) velocity U gradually increases with
the increase of the X. The velocity gradient (dU/dY) in
the near wall region of the variable porosity model is
larger than those of the other models.

The isotherms of the cases of the constant and variable
porosity models and four selected cases (Runs 1-4) of
the random porosity models are illustrated in Figs 8(a)—
(f), respectively. Like the results of the streamlines shown
in Figs 6(a)—(f), the isotherm distributions of the four
selected cases of the random porosity models are similar
to that of the constant porosity model. That the isotherms
are concentrated near the heated plate in the variable
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0.20 | i :
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U

(d)

() X = 0.25, (b) X = 0.5, (c) X = 0.75 and (d) X = 0.95.

porosity model is different from those of the other two
models.

Shown in Figs 9(a)—(d) are the distributions of the
local Nusselt number Nu, of the variable and constant
porosity models and four selected cases (Runs 1-4) of
the random porosity models. Where the local Nusselt
number Nu, is defined as

_hb k.20

Nug="2= 222
T ki oY|,

@31

The higher the standard deviation o, is, the larger the
fluctuation of the porosity distribution becomes. Then
the fluctuation of the local Nusselt number Nu, dis-
tribution along the heated plate for the random porosity
model increases as the standard deviation o, increases as
shown in Figs 9(a)—(c). Inversely, the variation of the
distribution of the Nu, of the smaller value of standard
deviation o, e.g. g, = 0.01 (Run 1), follows that of the
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Fig. 8. Isotherms of different porosity models: (a) constant, (b) variable, (c) random, Run I (g, = 0.01), (d) random, Run 2 (g, = 0.05),

(e) random, Run 3 (6, = 0.1) and (f) random, Run 4 (o, = 0.05).

constant porosity model with slight fluctuations. For the
cases of Runs 2 and 4, due to the different random vari-
ables, the results of Runs 2 and 4 are different. Conse-
quently, it is possible to obtain different heat transfer
performances of the porous blocks with the same mean
porosity and standard deviation. For the variable
porosity model, the local Nusselt number near the right
side wall of the porous block decreases with the increase
of the X, however, the Nu, increases in this region for
both the constant and random porosity models. The
phenomenon is induced by the development of the local
U velocity along the X mentioned in Figs 7(a)—(d).

The effect of the near wall local porosity ¢, defined
earlier at Y = 0.0015 on the local Nusselt number Nu,
for all eight cases of £ = 0.5, g, = 0.05 (runs 2, 4-10) are
indicated in Fig. 10. In essence, the larger the &, the
effective thermal conductivity k. is smaller, therefore, the
relationship between the Nu, and ¢, is a negative cor-
relation as shown in Fig. 10. The heat transfer mechanism
between the porous medium and the heated plate is the
combination of conductive and convective heat transfer.
Since the smaller porosity means that more solid phase

exists which contributes the conductive path to the heat
transfer and the inference that the convective heat trans-
fer herein is not a role may be drawn. Consequently, in
order to enhance the thermal performance of the porous
medium, the porosity near the heated plate should be
smaller to cause the conductive heat transfer to be domi-
nant.

In order to validate the above inference, the heat trans-
fer rate of an artificial random porosity case (artificial
random porosity model, Run 11) is examined. The values
of the porosity ¢ of the artificial random porosity model
are sorted out from the random porosity model of the
Run 2 (2 = 0.5 and o, = 0.05). The porosity distribution
of this model is reordered and arranged by the following
rules shown in Fig. 11. The most dense porosity is
arranged at the control volume 1 (the left most of the
first row), as the value of the X increases the porosity
becomes sparse. The porosity of the control volume 77
(the left most of the second row) is right behind the
porosity of the control volume 76 (the right most of the
first row) in the order of sparsity, and as the value of the
X increases, the porosity becomes more sparse as the row
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Fig. 9. The distributions of local Nusselt number Nu, for four selected cases of the random porosity models: (a) Run 1 (¢, = 0.01), (b)
Run 2 (o, = 0.05), (¢c) Run 3 (¢, = 0.1) and (d) run 4 (o, = 0.05).
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1. Follow the same rule until the last row, and the most
sparse porosity is arranged at the right upper corner.
The local Nusselt number Nu, distributions along the X
direction are shown in Fig. 12. The results of the random
porosity model are the average values of the total eight
cases (Runs 2,4-10) at each X position. The local Nusselt
number Nu, of the artificial random porosity model is
larger than those of the other three models. The results
are in agreement with the above inference.

5. Conclusions

A flow and thermal field of a porous block with random
porosity distribution under a laminar slot impinging jet
are investigated numerically. The effects of the random
porosity model on flow and thermal fields are examined
and compared with those of the constant and variable
porosity models. The results can be summarized as fol-
lows:

(1) The local Nusselt number distribution of the random
porosity model are more similar to those of the con-
stant porosity model than those of the variable
porosity model with the smaller standard deviation.
However, as the value of the standard deviation is
larger, the fluctuation of the local Nusselt number is
drastic and apparently different from those of the
other two models.

(2) The relationship between the local Nusselt number
Nu, and the near wall local porosity ¢, is a negative
correlation.

(3) In order to enhance the thermal performance of the
porous medium, the porosity near the heated plate
should be smaller to make the conductive heat trans-
fer dominant.

16.00
porosity model
— — constant
14.00 - - - - variable i
—— random (average) !
----- artificial random
"
=
7, 12.00
10.00
£=0.5 0.=0.05 .
\
\
8.00 L Il 1 1 1 Il 1 1 L
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 12. The local Nusselt number Nu, distributions of four
different porosity models.
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Appendix: the Kinderman—Ramage procedure

The Kinderman—Ramage procedure uses a mixture of
distributions, 4,, 4,, and 4, to generate a standard ran-
dom variable £, where the 4,, 4,, and 4; are three computer
generated pseudo-random variables with double
precision, such that 0.0 < 4, 2,, 4; < 1.0. The algorithm
of the Kinderman—Ramage procedure is as follows [21]:

Step 1. Generate A,. If 4, < 0.884070402298758, gen-
erate A, and deliver

¢ =a(1.131131635441807, + ) — |

where a = 2.216035867166471. Then go to Step 10.
Step 2. If 4, < 0.973310954173898, go to Step 4.
Step 3. Generate /, and 4; until

A3 < a*(@*—2In(%3)) ",

then if 1, < 0.9866554770869489 then deliver
E=(a*—21n(i))""

else deliver ¢ = — (a*—2 In(4;))". Then go to Step 10.

Step 4. If /2, < 0.958720824790463, go to Step 6.
Step 5. Generate 4, and 4;. Set

t = a—[0.630834801921960 min (s, 45)].

If max (4,, 43) < 0.755591531667601, go to Step 9.
If 0.034340503750111 (|4,—43]) < g(2), go to Step 9;
otherwise repeat Step 5.
where
g(t) = ¢ (1) —0.18002519106563 + (a— |t]) for |t] < a
and
o) = 1/\/ﬂe"2"'2 (normal density function)
Step 6. If 4, < 0.911312780288703, go to Step 8.
Step 7. Generate 4, and 4;. Set

t = 0.479727404222441 4 [1.105473661022070 min (4, /5)]

If max (4,, 43) < 0.872834976671790, go to Step 9.

If 0.049264496373128 (|4,—43]) < g(?), go to Step 9;
otherwise repeat Step 7.
Step 8. Generate 4, and 4;. Set

t = 0.479727404222441 —[0.595507138015940 min (4, /5)]

If max (4,, 23) < 0.80557792443817, go to Step 9; other-
wise repeat Step 8.

Step 9. If A, <1, deliver £ =1t otherwise deliver
¢ = —t. Then go to Step 10.

Step 10. Transform the standard random variable ¢ into
the random variable ¢ with given & and o,. The relation-
ship between ¢ and ¢ is

e=¢+E¢xa,.
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